84 research outputs found

    TICAL - a web-tool for multivariate image clustering and data topology preserving visualization

    Get PDF
    In life science research bioimaging is often used to study two kinds of features in a sample simultaneously: morphology and co-location of molecular components. While bioimaging technology is rapidly proposing and improving new multidimensional imaging platforms, bioimage informatics has to keep pace in order to develop algorithmic approaches to support biology experts in the complex task of data analysis. One particular problem is the availability and applicability of sophisticated image analysis algorithms via the web so different users can apply the same algorithms to their data (sometimes even to the same data to get the same results) and independently from her/his whereabouts and from the technical features of her/his computer. In this paper we describe TICAL, a visual data mining approach to multivariate microscopy analysis which can be applied fully through the web.We describe the algorithmic approach, the software concept and present results obtained for different example images

    BIIGLE 2.0 - Browsing and Annotating Large Marine Image Collections

    Get PDF
    Combining state-of-the art digital imaging technology with different kinds of marine exploration techniques such as modern AUV (autonomous underwater vehicle), ROV (remote operating vehicle) or other monitoring platforms enables marine imaging on new spatial and/or temporal scales. A comprehensive interpretation of such image collections requires the detection, classification and quantification of objects of interest in the images usually performed by domain experts. However, the data volume and the rich content of the images makes the support by software tools inevitable. We define some requirements for marine image annotation and present our new online tool Biigle 2.0. It is developed with a special focus on annotating benthic fauna in marine image collections with tools customized to increase efficiency and effectiveness in the manual annotation process. The software architecture of the system is described and the special features of Biigle 2.0 are illustrated with different use-cases and future developments are discussed

    A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages

    Get PDF
    Loyek C, Kölling J, Langenkämper D, Niehaus K, Nattkemper TW. A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages. In: Gama J, Bradley E, Hollmén J, eds. Advances in Intelligent Data Analysis X: 10th International Symposium, IDA 2011, Porto, Portugal, October 29-31, 2011. Proceedings. Lecture Notes in Computer Science. Vol 7014. Berlin, Heidelberg: Springer; 2011: 258-269

    Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification

    Get PDF
    In marine research, image data sets from the same area but collected at different times allow seafloor fauna communities to be monitored over time. However, ongoing technological developments have led to the use of different imaging systems and deployment strategies. Thus, instances of the same class exhibit slightly shifted visual features in images taken at slightly different locations or with different gear. These shifts are referred to as concept drift in the domains computational image analysis and machine learning as this phenomenon poses particular challenges for these fields. In this paper, we analyse four different data sets from an area in the Peru Basin and show how changes in imaging parameters affect the classification of 12 megafauna morphotypes with a 34-layer ResNet. Images were captured using the ocean floor observation system, a traditional sled-based system, or an autonomous underwater vehicle, which is used as an imaging platform capable of surveying larger regions. ResNet applied on separate individual data sets, i.e., without concept drift, showed that changing object distance was less important than the amount of training data. The results for the image data acquired with the ocean floor observation system showed higher performance values than data collected with the autonomous underwater vehicle. The results from this concept drift studies indicate that collecting image data from many dives with slightly different gear may result in training data well-suited for learning taxonomic classification tasks and that data volume can compensate for light concept drift

    Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification

    Get PDF
    Langenkämper D, van Kevelaer R, Purser A, Nattkemper TW. Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification. Frontiers in Marine Science. 2020;7: 506.In marine research, image data sets from the same area but collected at different times allow seafloor fauna communities to be monitored over time. However, ongoing technological developments have led to the use of different imaging systems and deployment strategies. Thus, instances of the same class exhibit slightly shifted visual features in images taken at slightly different locations or with different gear. These shifts are referred to as concept drift in the domains computational image analysis and machine learning as this phenomenon poses particular challenges for these fields. In this paper, we analyse four different data sets from an area in the Peru Basin and show how changes in imaging parameters affect the classification of 12 megafauna morphotypes with a 34-layer ResNet. Images were captured using the ocean floor observation system, a traditional sled-based system, or an autonomous underwater vehicle, which is used as an imaging platform capable of surveying larger regions. ResNet applied on separate individual data sets, i.e., without concept drift, showed that changing object distance was less important than the amount of training data. The results for the image data acquired with the ocean floor observation system showed higher performance values than data collected with the autonomous underwater vehicle. The results from this concept drift studies indicate that collecting image data from many dives with slightly different gear may result in training data well-suited for learning taxonomic classification tasks and that data volume can compensate for light concept drift

    Deep learning-based diatom taxonomy on virtual slides

    Get PDF
    Kloster M, Langenkämper D, Zurowietz M, Beszteri B, Nattkemper TW. Deep learning-based diatom taxonomy on virtual slides. Scientific Reports. 2020;10(1): 14416

    A data science approach for multi-sensor marine observatory data monitoring cold water corals (Paragorgia arborea) in two campaigns

    Get PDF
    Fixed underwater observatories (FUO), equipped with digital cameras and other sensors, become more commonly used to record different kinds of time series data for marine habitat monitoring. With increasing numbers of campaigns, numbers of sensors and campaign time, the volume and heterogeneity of the data, ranging from simple temperature time series to series of HD images or video call for new data science approaches to analyze the data. While some works have been published on the analysis of data from one campaign, we address the problem of analyzing time series data from two consecutive monitoring campaigns (starting late 2017 and late 2018) in the same habitat. While the data from campaigns in two separate years provide an interesting basis for marine biology research, it also presents new data science challenges, like the the marine image analysis in data form more than one campaign. In this paper, we analyze the polyp activity of two Paragorgia arborea cold water coral (CWC) colonies using FUO data collected from November 2017 to June 2018 and from December 2018 to April 2019. We successfully apply convolutional neural networks (CNN) for the segmentation and classification of the coral and the polyp activities. The result polyp activity data alone showed interesting temporal patterns with differences and similarities between the two time periods. A one month “sleeping” period in spring with almost no activity was observed in both coral colonies, but with a shift of approximately one month. A time series prediction experiment allowed us to predict the polyp activity from the non-image sensor data using recurrent neural networks (RNN). The results pave a way to a new multi-sensor monitoring strategy for Paragorgia arborea behaviour.publishedVersio

    AKE - The Accelerated k-mer Exploration Web-Tool for Rapid Taxonomic Classification and Visualization

    Get PDF
    Langenkämper D, Goesmann A, Nattkemper TW. AKE - The Accelerated k-mer Exploration Web-Tool for Rapid Taxonomic Classification and Visualization. BMC Bioinformatics. 2014;15(1): 384.Background: With the advent of low cost, fast sequencing technologies metagenomic analyses are made possible. The large data volumes gathered by these techniques and the unpredictable diversity captured in them are still, however, a challenge for computational biology. Results: In this paper we address the problem of rapid taxonomic assignment with small and adaptive data models (< 5 MB) and present the accelerated k-mer explorer (AKE). Acceleration in AKE's taxonomic assignments is achieved by a special machine learning architecture, which is well suited to model data collections that are intrinsically hierarchical. We report classification accuracy reasonably well for ranks down to order, observed on a study on real world data (Acid Mine Drainage, Cow Rumen). Conclusion: We show that the execution time of this approach is orders of magnitude shorter than competitive approaches and that accuracy is comparable. The tool is presented to the public as a web application

    Strategies for Tackling the Class Imbalance Problem in Marine Image Classification

    Get PDF
    Langenkämper D, van Kevelaer R, Nattkemper TW. Strategies for Tackling the Class Imbalance Problem in Marine Image Classification. Presented at the International Conference on Pattern Recognition 2018, Computer Vision for Automated Analysis of Underwater Imagery Workshop, Beijing.Abstract. Research of deep learning algorithms, especially in the field of convolutional neural networks (CNN), has shown significant progress. The application of CNNs in image analysis and pattern recognition has earned a lot of attention in this regard and few applications to classify a small number of common taxa in marine image collections have been reported yet. In this paper, we address the problem of class imbalance in marine image data, i.e. the common observation that 80%-90% of the data belong to a small subset of L′ classes among the total number of L observed classes, with L′ << L. A small number of methods to compensate for the class imbalance problem in the training step have been proposed for the common computer vision benchmark datasets. But marine image collections (showing for instance megafauna as considered in this study) pose a greater challenge as the observed imbalance is more extreme as habitats can feature a high biodiversity but a low species density. In this paper, we investigate the potential of various over-/undersampling methods to compensate for the class imbalance problem in marine imag- ing. In addition, five different balancing rules are proposed and analyzed to examine the extent to which sampling should be used, i.e. how many samples should be created or removed to gain the most out of the sam- pling algorithms. We evaluate these methods with AlexNet trained for classifying benthic image data recorded at the Porcupine Abyssal Plain (PAP) and use a Support Vector Machine as baseline classifier. We can report that the best of our proposed strategies in combination with data augmentation applied to AlexNet results in an increase of thirteen basis points compared to AlexNet without sampling. Furthermore, examples are presented, which show that the combination of oversampling and augmentation leads to a better generalization than pure augmentation

    BIIGLE 2.0 - Browsing and Annotating Large Marine Image Collections

    Get PDF
    Langenkämper D, Zurowietz M, Schoening T, Nattkemper TW. BIIGLE 2.0 - Browsing and Annotating Large Marine Image Collections. Frontiers in Marine Science. 2017;4(March): 83.Combining state-of-the art digital imaging technology with different kinds of marine exploration techniques such as modern autonomous underwater vehicle (AUV), remote operating vehicle (ROV) or other monitoring platforms enables marine imaging on new spatial and/or temporal scales. A comprehensive interpretation of such image collections requires the detection, classification and quantification of objects of interest (OOI) in the images usually performed by domain experts. However, the data volume and the rich content of the images makes the support by software tools inevitable. We define some requirements for marine image annotation and present our new online tool BIIGLE 2.0. It is developed with a special focus on annotating benthic fauna in marine image collections with tools customized to increase efficiency and effectiveness in the manual annotation process. The software architecture of the system is described and the special features of BIIGLE 2.0 are illustrated with different use-cases and future developments are discussed
    corecore